#### From Sludge to Biogas

#### An environmentally Sustainable Approach for Treating Aquaculture Waste

#### Kevin R. Sowers Institute of Marine & Environmental Technology



Blue Economy Aquaculture Forum

18 April 2024 Abu Dhabi, UAE

#### Aquaculture Production is Growing

WORLD CAPTURE FISHERIES AND AQUACULTURE PRODUCTION, 1980–2030



FAO 2022

IMET

## Advantages of Recirculating Aquaculture Systems



- Can be installed in nearly any location
  benefiting local economy
- Biosecure: non-native species
- Near-zero discharge of organic waste material
  - Total control of growth parameters-generic
- Low risk of pathogens
- Low risk of toxic compounds from environment



#### RAS Works by Harnessing Natural Microbial Processes



#### Growth Efficiency of Sea Bream in RAS



IMET



#### RAS Works by Harnessing Natural Microbial Processes



#### Fish Waste = Metabolic Products + Uneaten Feed



## Natural Production of Biogas



- Efficient natural process
- Anaerobic environments + organic matter
- Predominant products are  $CO_2+CH_4$  (biogas)
- Freshwater and marine



### **Composition of Methanogenic Consortium**



IMET

#### **Bioprospecting for Biogas Producing Consortia**

Sludge or Sediment From different sources



## Advantages of Enriching for Biogas Culture



- Culture developed from several sources
  provides robust inoculum
- Optimal growth parameters can be determined to inform bioreactor design and operation
- High volumes of concentrated cells can be generated for rapid start up or recovery



#### Efficient Conversion of Waste to Biogas





Up to 90% conversion depending on retention time

Fuel grade biogas



#### Marine RAS for Atlantic Salmon



- Stocked the system at high density (>65 kg/m<sup>3</sup>)
- Energy input and methane yields measured to grow out
- Experimental energy yield = 10-12% OPEX



#### Cermaq – Forsan, Norway



- 12.2 million smolt capacity
- 160 tons of sludge annually
- 0.6 GWh annually
- 270 tons CO<sub>2</sub> eqv.



#### Waste Treatment Designed by Sterner AS



Solids separation

Concentration/hydrolysis

100 m<sup>3</sup> anaerobic baffled bioreactor



#### Enrichment – Scale Up - Inoculation





## **ABR Performance**



•Rate of biogas production up to 175 m<sup>3</sup>/day

•Methane content- 60-70%

•Stable operation for 5 years



# Why is converting Sludge to Biogas Important for the Environment?

- Prevents release of CH<sub>4</sub> as a greenhouse gas
- Prevents negative impact of salt contamination in a landfill
- Possible to desalinate residual solids from biogas reactor for agricultural fertilizer



# 

# Thank you

