

iFarm, AI and health records for fish

Geir Stang Hauge, CEO BioSort Blue Economy Aquaculture Forum, April 18th 2024

BIOSORT.NO

Salmon farming suffers from group-based operations

Group based treatments is carried out at the expense of healthy individuals

- Compromising growth
- Injuries from lice treatment is the No. 1 source of mortality
- Stress increase risk of disease outbreaks

Sick and injured fish remain in the pen and spread disease

- Compromising welfare
- Increasing disease transmission
- Feed is used on fish that are likely to die

Dependency on small sampling sizes and poor data collection hinder operational improvement

- Important decisions based on protocols or sampling
- Feeding operators have limited information about actual population growth
- Suboptimal harvest planning reduces achieved market price

INDUSTRY CHALLENGE

Key challenges are sea lice, disease and mortality

Fish Farmer

News

Salmon lice costing Norway NOK 5 billion a year

By Vince McDonagh - 28th October 2019

f) 🕑 😳 🛅 🔿

Lerøy Seafood farm

THE task of tackling salmon lice cost Norway's aquaculture industry more than five billion kroner, or some £440 million last year, a leading researcher has calculated.

Sea lice direct cost is over NOK 5 billion per year in Norway alone

Eksempel på vintersår. Photo: MSD Animal Health Norge

done to prevent them?

as well as early slaughter

10 July 2023 3:00 GMT UPDATED 10 July 2023 7:25 GMT

By Ann Elleen D Nygård and John Evans 🗘

Winter sores cost Norwegian salmon

In 2022 winter sores were detected at 433 of around 878 sites.

Disease challenges a welfare challenge

and result in decreased superior share

farmers \$750 million a year; what can be

 \equiv

Logg inn 🛕 📋

I 2020 døde et høyt antall laks før slakt. Foto: Anders Furuset (arkiv)

Laksedødelighet med høg prislapp: koster trolig næringen 5–6 milliarder kroner

– Når dødeligheten for stor fisk øker blir det veldig dyrt, sier Nofima-forsker.

- 63 million dead salmon in Norway 2023, average weight of dead fish over 2 kg
- Sustainability challenge that a large amount of feed goes to fish that die
- Welfare challenge since fish that die often has been sick or injured

iFarm value creation highlights

- Unique insight by monitoring the whole population and using FishID health records
 Understanding fish health development, document fish welfare and support operational decisions
- Continuous, gentle, lice removal, only for fish with lice
 - Eliminate need for boat treatments
 - Remove lice before reproduction
- Reduced mortality and higher superior share
 - > Take out fish that can transmit disease, e.g. fish with winter ulcers
 - Remove loser and deformed fish generally more robust fish in pen
- Optimize feeding by knowing the actual growth response

Subset of face recognition dataset

عن عن عن عن

Follow development of wounds with FishID

5 days later – wound is starting to heal

Individual Salmon Health Records will unlock unique insights

How to access all individuals in a cage?

Accessing the complete population in the cage, when fish passes through the iFarm sensor two times for every trip to the surface

Fish primary stays deep with less exposure to sea lice

Precision images and ability to sort fish for treatment or removal

Unique illumination and optics yields unmatched precision in fish evaluation

Sorting unlocks an ocean of opportunities

BioSort technology in 4th Generation Sensor

- Camera optics for sharpness and light
- Illumination for maximum contrast
- High performance vision (<85 milliseconds)
- Autonomous cleaning

Precision farming

Seeing the same fish form different angles

Tracking features on the fish 11 times per second yield precision

RightCam-B

Sorting and treating individual fish

Status on technology

Third-generation sorter, will be installed in cage spring 2024 for autonomous sorting

Developed in close collaboration with Cermaq and ScaleAQ

2020

2024

2020/21 Martnesvika

- 2 different housing geometries for fish behavior tests
- Fish exhibits the desired behavior
- 1st gen. sensor tested

2021/22 Langøyhovden

- 6 different housing geometries for fish behavior tests
- 2nd gen. sensor tested
- 1st gen. sorter proven to work successfully with fish

2022/23 Hellarvika

- 3rd gen. sensor
- 2nd gen. sorter with suction Computer Vision algorithms
- go live with all supporting edge and cloud software

2023/24 Langøyhovden

- Performance computer vision with reliable outputs
- 3rd gen. sorter
- Integrated feeding system

Better Fish Welfare, One Fish at a Time